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Abstract

Hysteresis exhibited by smart materials hinders their wider applicability in actuators and sensors. In this

paper methods are studied for recursive identification and adaptive inverse control of smart material actuators,

where a Preisach operator with a piecewise uniform density function is used to model the hysteresis. Persistent

excitation conditions for parameter convergence are discussed in terms of the input to the Preisach operator.

Two classes of recursive identification schemes are explored, one based on the hysteresis output, the other

based on the time difference of the output. Asymptotic tracking for the adaptive inverse control method is

proved, and the condition for parameter convergence is given in terms of the reference trajectory. Practical

implementation issues are also investigated. Simulation and experimental results based on a magnetostrictive

actuator are used to illustrate the approach.

1 Introduction

Smart materials, e.g., magnetostrictives, piezoelectrics, and shape memory alloys (SMA), display coupling of

elastomechanics with electromagnetic/thermal influences. Hence these materials have built-in sensing/actuation

mechanisms. Hysteresis widely existing in smart materials, however, makes the effective use of smart material

actuators and sensors quite challenging. Control of hysteresis in smart materials has attracted attention in recent

years [1]. Hysteresis models can be roughly classified into physics-based models and phenomenological models.

The most popular phenomenological hysteresis model used for smart materials has been the Preisach model

[2, 3, 4, 5, 6, 7, 8]. A similar type of operator called Krasnosel’skii-Pokrovskii (KP) operator has also been used

[9, 10].

Inverse compensation is a fundamental approach in coping with hysteresis, where one aims to cancel out the

hysteresis effect by constructing a right inverse of the hysteresis operator [3, 11, 12, 10, 7, 8]. The performance of
∗This research was supported by the Lockheed Martin Chair Endowment Funds.
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inverse compensation is susceptible to model uncertainties and to errors introduced by (inexact) inverse algorithms.

Hysteretic behaviors of smart materials often vary with time, temperature and some other ambient conditions. To

combat this problem, a robust control framework was proposed by combining inverse compensation with l1 control

theory in [13]. An alternative approach is adaptive inverse control [11, 14, 15]. Tao and Kokotović developed

an adaptive inverse control scheme for a class of hysteresis models with piecewise linear characteristics [11]. An

adaptive identification and inverse compensation method was studied for the KP operator and applied to a SMA

actuator by Webb et al. [14]. In [15] an adaptive inverse scheme was presented for piezoelectric actuators, where

the Prandtl-Ishlinskii hysteresis operator was used for hysteresis modeling.

This paper is devoted to the study of recursive identification and adaptive inverse of hysteresis in smart

materials. The following highlights the major differences of this work from the previous works reported in [11, 14,

15]: (1) the Preisach operator is used as the hysteresis model; (2) the persistent excitation (P.E.) conditions for

the convergence of parameter identification are studied in terms of the input to the hysteresis operator; and (3)

the asymptotic tracking property of the adaptive inverse control algorithm is proved, and the issue of parameter

convergence is discussed in terms of the reference trajectory. Experimental results based on a magnetostrictive

actuator, together with extensive simulation results, are used to examine the effectiveness of the proposed approach.

The remainder of the paper is organized as follows. The Preisach operator is briefly reviewed in Section 2.

Recursive identification algorithms are studied in Section 3. Two classes of schemes are compared, one based on

the output of the hysteresis model and the other based on the time difference of the output. The adaptive inverse

control scheme is discussed in Section 4. Finally some conclusions are provided in Section 5.

2 The Preisach Operator

The Preisach operator is briefly reviewed in this section. A more detailed treatment can be found in [16, 17, 18].

For a pair of thresholds (β, α) with β ≤ α, consider a simple hysteretic element γ̂β,α[·, ·], as illustrated in Fig. 1.

Let C([0, T ]) denote the space of continuous functions on [0, T ]. For u ∈ C([0, T ]) and an initial configuration

ζ ∈ {−1, 1}, ω = γ̂β,α[u, ζ] is a function from [0, T ] to {−1, 1} defined as follows [17]:

ω(0)
�
=




−1 if u(0) ≤ β

ζ if β < u(0) < α

1 if u(0) ≥ α

,

and for t ∈ (0, T ], setting Xt
�
= {τ ∈ (0, t] : u(τ) = β or α},

ω(t)
�
=




ω(0) if Xt = ∅
−1 if Xt �= ∅ and u(maxXt) = β

1 if Xt �= ∅ and u(maxXt) = α

.

This operator is sometimes referred to as an elementary Preisach hysteron (it is called hysteron hereafter in

this paper), since it is a building block of the Preisach operator. Define P0
�
= {(β, α) ∈ R

2 : β ≤ α}. P0 is

called the Preisach plane, and each (β, α) ∈ P0 is identified with the hysteron γ̂β,α. For u ∈ C([0, T ]) and a Borel
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Fig. 1: An elementary Preisach hysteron γ̂β,α[·, ·].

measurable initial configuration ζ0 of all hysterons, ζ0 : P0 → {−1, 1}, the output of the Preisach operator Γ is

defined as [17]:

y(t) = Γ[u, ζ0](t) =
∫
P0

µ(β, α)γ̂β,α[u, ζ0(β, α)](t)dβdα, (1)

where the weighting function µ is often referred to as the Preisach function [16] or the density function [18].

Throughout the paper it is assumed that µ ≥ 0. Furthermore, to simplify the discussion, assume that µ has a

compact support, i.e., µ(β, α) = 0 if β < β0 or α > α0 for some β0, α0. In this case it suffices to consider a finite

triangular area in the Preisach plane P �
= {(β, α) ∈ P0|β ≥ β0, α ≤ α0} (see Fig. 2(a)).

The memory effect of the Preisach operator can be captured by the memory curves in P . At time t, P can be

divided into two regions:

P+(t)
�
= {(β, α) ∈ P| output of γ̂β,α at t is + 1},

P−(t)
�
= {(β, α) ∈ P| output of γ̂β,α at t is − 1}.

Now assume that at some initial time t0, the input u(t0) = u0 < β0. Then the output of every hysteron is −1.

Therefore P−(t0) = P , P+(t0) = ∅ and this corresponds to the “negative saturation” (Fig. 2(b)). Next assume

that the input is monotonically increased to some maximum value at t1 with u(t1) = u1. The output of γ̂β,α is

switched to +1 as the input u(t) increases past α. Thus at time t1, the boundary between P−(t1) and P+(t1) is the

horizontal line α = u1 (Fig. 2(c)). Next assume that the input starts to decrease monotonically until it stops at t2
with u(t2) = u2. It’s easy to see that the output of γ̂β,α becomes −1 as u(t) sweeps past β, and correspondingly,

a vertical line segment β = u2 is generated as part of the boundary (Fig. 2(d)). Further input reversals generate

additional horizontal or vertical boundary segments.

From the above illustration, each of P− and P+ is a connected set [16], and the output of Γ is determined by

the boundary between P− and P+ if there is no Preisach weighting mass (or impulse in µ) on the curve. The

boundary is called the memory curve. The memory curve has a staircase structure and its intersection with the

line α = β gives the current input value. The set of all memory curves is denoted Ψ. The memory curve ψ0 at

t = 0 is called the initial memory curve and it represents the initial condition of the Preisach operator. Hereafter

the initial memory curve will be put as the second argument of the Preisach operator.

Rate-independence is one of the fundamental properties of the Preisach operator:

Theorem 2.1 (Rate-independence) [17] If φ : [0, T ] → [0, T ] is an increasing continuous function satisfying

φ(0) = 0 and φ(T ) = T , then for u ∈ C([0, T ]), Γ[u ◦ φ, ψ0](t) = Γ[u, ψ0](φ(t)), ∀t ∈ [0, T ], where “◦” denotes

composition of functions.
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Fig. 2: Memory curves in the Preisach plane.

3 Recursive Identification of Hysteresis

For the Preisach operator, the “parameter” is the Preisach density function. A classical method to identify the

density function is using the so called first order reversal curves, detailed in Mayergoyz [16]. A first order reversal

curve can be generated by first bringing the input to β0, followed by a monotonic increase to α, then a monotonic

decrease to β. The term “first order reversal” comes from that each of these curves is formed after the first

reversal of the input. Denote the output value as f(β, α) when the input reaches β. Then the density µ(β, α)

can be obtained as µ(β, α) = 1
2

∂2f(β,α)
∂β∂α . Since it involves twice differentiation, a smooth approximating surface

is fit to the data points in practice [3, 6]. As pointed out in [6], deriving the density by differentiating a fitted

surface is inherently imprecise, since different types of approximating functions lead to quite different density

distributions. A second approach is to devise the input sequence carefully and derive the Preisach weighting

masses (on a discretization grid) directly from the output measurements [19]. This scheme is very sensitive to

measurement noises as one can easily see. Hence a third approach is to identify the Preisach weighting masses or

the weights for basis functions based on the least squares method [9, 10, 7]. All of the aforementioned methods

are used off-line. However, it has been observed that the hysteretic behaviors of smart materials are dependent

on temperature and some other ambient conditions, and often vary with time slowly. Hence it is desirable to have

recursive, on-line schemes for the identification of hysteresis parameters.

3.1 Discretization of the Preisach operator

In practice the Preisach operator needs to be discretized in one way or another during the identification process.

A natural way to approximate a Preisach operator is to assume that inside each cell of the discretized Preisach

plane, the Preisach density function is constant. This approximation has nice convergence (to the true Preisach

operator) properties under mild assumptions [19].

Let [umin, umax] be the practical input range to the hysteresis operator, which is often a strict subset of [α0, β0].
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For the hysteretic behavior one can focus on the triangle bounded by umin and umax in the Preisach plane, since the

contribution to the output from hysterons outside this triangle is constant [7]. Discretize [umin, umax] uniformly

into L+ 1 levels ( called discretization of level L in this paper), where the discrete input levels ui, 1 ≤ i ≤ L+ 1,

are defined as

ui = umin + (i− 1)∆u,

where ∆u = umax−umin

L . The cells in the discretization grid are labeled, as illustrated in Fig 3(a) for the case of

L = 4.

u1

u2

u3

u4

u1 u2 u4 u5

u5

(2,2)

(4,4)(4,2)(4,1) (4,3)

α

(3,1) (3,2) (3,3)

(2,1)

(1,1)

β
u1 u2

u3

u4 u5

u1

u2

u4

u5

α

β

(a) (b)

Fig. 3: Illustration of the discretization scheme (L = 4): (a) Labeling of the disretization cells; (b) Weighting

masses sitting at the centers of cells.

We note that the Preisach operator with piecewise uniform density is still an infinite-dimensional operator. If

one assumes that the Preisach weighting function inside each cell is concentrated at the center as a weighting mass

(Fig. 3(b)), the corresponding Preisach operator becomes a weighted combination of a finite number of hysterons.

3.2 Recursive identification schemes

In the interest of digital control, the discrete-time setting is considered in this paper. One way to obtain a

piecewise uniform density is to first identify the discrete weighting masses (Fig. 3(b)), and then distribute each

mass uniformly over the corresponding cell [13]. A Preisach operator with discrete weighting masses is easier to

analyze than a Preisach operator with a piecewise uniform weighting density; however, these two types of operators

bear much similarity and essential results for one can be easily translated into those for the other. Hence recursive

identification of Preisach weighting masses is first studied, and then the extension needed for identifying the density

directly is briefly discussed.

In this paper two classes of identification algorithms are examined, one based on the hysteresis output, and

the other based on the time difference of the output (called difference-based hereafter).
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Output-based identification

The output y[n] of the discretized Preisach operator (corresponding to the case illustrated in Fig. 3(b)) at time

instant n can be expressed as

y[n] =
L∑

i=1

i∑
j=1

W̄ij [n]ν̄∗ij , (2)

where W̄ij [n] denotes the state (1 or −1) of the hysteron in cell (i, j) at time n, and ν̄∗ij denotes the hys-

teron’s Preisach weighting mass. Stacking W̄i,j [n] and ν̄∗i,j into two vectors, W [n] = [W1[n] · · ·WK [n]]T and

ν∗ = [ν∗1 · · · ν∗K ]T , where K = L(L+1)
2 is the number of cells, one rewrites (2) as

y[n] =
K∑

k=1

Wk[n]ν∗k = W [n]T ν∗. (3)

Let ν̂[n] = [ν̂1[n] · · · ν̂K [n]]T be the estimate of ν∗ at time n, and let

ŷ[n] =
K∑

k=1

Wk[n]ν̂k[n] = W [n]T ν̂[n]

be the predicted output based on the parameter estimate at time n. The gradient algorithm [20] to update the

estimate is

ν̂[n+ 1] = ν̂[n] − γ
(ŷ[n] − y[n])W [n]
W [n]TW [n]

, (4)

where 0 < γ < 2 is the adaptation constant. To ensure that the weighting masses are nonnegative, we let

ν̂k[n+ 1] = 0 if the k-th component of the right hand side of (4) is negative. Since this parameter projection step

brings the parameter estimate closer to the true values, it does not invalidate the convergence result should this

step were absent [20]. Hence this step will not be explicitly considered for convergence analysis in this paper (in

particular, in the proof of Theorem 4.1). Define the parameter error ν̃[n]
�
= ν̂[n] − ν∗. Then

ν̃[n+ 1] = F [n]ν̃[n], (5)

where F [n] = IK − W [n]W [n]T

W [n]T W [n]
, and IK represents the identity matrix of dimension K.

It is well-known [20] that the convergence of the algorithm (4) depends on the persistent excitation (P.E.)

condition of the sequence W [n]. The sequence W [n] is persistently exciting if, there exist an integer N > 0 and

c′1 > 0, c′2 > 0, such that for any n0,

c′1IK ≤
n0+N−1∑

n=n0

W [n]W [n]T

W [n]TW [n]
≤ c′2IK . (6)

Due to the equivalence of uniform complete observability under feedback [20, 21], from (6), there exist c1 > 0, c2 > 0

such that for any n0,

c1IK ≤ GN (n0) ≤ c2IK , (7)

where GN (n0) is the observability grammian of the system (5) defined as

GN (n0) =
n0+N−1∑

n=n0

Φ[n, n0]TW [n]W [n]T Φ[n, n0]
W [n]TW [n]

,
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and Φ[n, n0] is the state transition matrix Φ[n, n0] =
∏n−1

k=n0
F [k]. It can be shown [20] that when (7) is satisfied,

‖ν̃[n+N ]‖ ≤ √
1 − c1‖ν̃[n]‖, (8)

from which exponential convergence to ν∗ can be concluded.

Difference-based identification

An alternate way to identify ν∗ is using the time difference z[n] of the output y[n], where

z[n]
�
= y[n] − y[n− 1] = (W [n] −W [n− 1])T ν∗.

Let ŷ[n−] and ŷ[n− 1] be the output predictions at time n and n− 1 based on ν̂[n− 1], respectively, i.e.,

ŷ[n−]
�
= W [n]T ν̂[n− 1], ŷ[n− 1]

�
= W [n− 1]T ν̂[n− 1].

Define ẑ[n] �= ŷ[n−] − ŷ[n− 1] = (W [n] −W [n− 1])T ν̂[n− 1]. Let V [n] be the time difference of hysteron states,

V [n]
�
= W [n] −W [n− 1]. Then we can obtain the following identification scheme based on z[n]:

ν̂[n+ 1] =

{
ν̂[n] − γ (ẑ[n]−z[n])V [n]

V [n]T V [n] , if V [n] �= 0

ν̂[n] if V [n] = 0
. (9)

As in the output-based scheme, an additional parameter projection step will be applied if any component of

ν̂[n + 1] is negative. Similarly one can write down the error dynamics equation, the P.E. condition on V [n], and

the convergence rate estimate corresponding to the difference-based scheme (9). The sequences V [n] and W [n]

are almost equivalent in the sense that, for any N > 0, {V [n]}N
n=1 can be constructed from {W [n]}N

n=0, and

conversely, {W [n]}N
n=1 can be constructed from W [0] and {V [n]}N

n=1. However, there are motivations to introduce

the difference-based scheme (9). While W [n] has components ±1, the components of V [n] are ±2 or 0. Often

times most components of V [n] are 0 since Vk[n] �= 0 only if the k-th hysteron changed its state at time n. This

has two consequences: (1) The P.E. condition of V [n] is easier to analyze than that of W [n]; (2) The convergence

of the difference-based scheme (assuming that P.E. is satisfied) is faster than that of the output-based scheme

since z[n] carries more specific information about ν∗.

The P.E. condition for the difference-based algorithm is equivalent to that {V [n]}n0+N−1
n=n0

spans R
K since V [n]

can take only a finite number of possible values. It is of practical interest to express the P.E. conditions in terms

of the input u[n] to the hysteresis operator (in which case u[n] is said to be P.E.). Recall that u[n] takes values in

a finite set {ui, 1 ≤ i ≤ L+1}. To avoid ambiguity one should understand that the input to the Preisach operator

is monotonically changed from u[n− 1] to u[n]. In the analysis below it is assumed that the input does not change

more than one level during one sampling time. The assumption is not restrictive considering the rate-independence

of the Preisach operator, but it helps to ease the presentation.

Theorem 3.1 (Necessary condition for P.E.) If {V [n]} is P.E., then there exists N > 0, such that for any

n0, for any i ∈ {1, 2, · · · , L}, u[n] achieves a local maximum at ui+1 or a local minimum at ui during the time

period [n0, n0 +N − 1].

7



Proof. Let’s call a hysteron active at n if it changes state at time n. Since the input changes at most one level

each time, if u[n] > u[n− 1], the set of active hysterons must have the form S+
i,j

�
= {(i, j), (i, j + 1), · · · , (i, i)} for

some i, j with 1 ≤ i ≤ L and 1 ≤ j ≤ i (refer to the labeling scheme in Fig. 3(a)), and the components of V [n]

corresponding to elements of S+
i,j are 2 and other components equal 0. Similarly, if u[n] < u[n−1], the set of active

hysterons has the form S−
i,j

�
= {(j, j), (j+1, j), · · · , (i, j)} for some i, j, and the components of V [n] corresponding

to elements of S−
i,j are −2 and other components equal 0.

If, for some i′, ui′+1 is not a local maximum and u′i is not a local minimum, S+
i′,i′ or S−

i′,i′ will not become the

set of active hysterons during [n0, n0 +N − 1]. Analysis on the Preisach plane reveals that the contribution to the

output from the hysteron (i′, i′) cannot be isolated, and hence {Vn}n0+N−1
n=n0+1 does not span R

K . �

Remark 3.1 From Theorem 3.1, for a Preisach operator with discretization level L, it is necessary that the input

u[n] has L reversals at different input levels for parameter convergence. This is in analogy to (but remarkably

different from) the result for linear systems, where the input is required to have at least n frequency components

for identification of n parameters [20, 21].

Theorem 3.1 implies that the input levels u1 and uL+1 must be visited for P.E. to hold. When the input hits

u1, all hysterons have output −1 and the Preisach operator is in negative saturation; similarly, when the input

hits uL+1, the Preisach operator is in positive saturation. For either case all the previous memory is “erased”

and the operator is “reset”. Starting from these reset points, one can keep track of the memory curve ψ[n] (the

state of the Preisach operator) according to the input u[·]. Consider an input sequence {u[n]}nb
n=na

, na < nb. If

there exist n1, n2, n3 and n4 with na ≤ n1 < n2 ≤ n3 < n4 ≤ nb such that the memory curve ψ[n1] = ψ[n3]

and ψ[n2] = ψ[n4], we can obtain another input sequence {u′[n]}nb
n=na

by swapping the section {u[n]}n2
n=n1

with

the section {u[n]}n4
n=n3

. We write {u[n]}nb
n=na

P.E.≡ {u′[n]}nb
n=na

(called equivalent in terms of P.E.) since the

two sequences carry same excitation information for the purpose of parameter identification. The set of all input

sequences obtained from {u[n]}nb
n=na

} as explained above (with possibly zero or more than one swappings) form the

P.E. equivalent class of {u[n]}nb
n=na

}, denoted as {u[n]}nb
n=na

}. Note that in particular, {u[n]}nb
n=na

} ∈ {u[n]}nb
n=na

}.
We are now ready to present a sufficient condition for P.E. in terms of the input u[n].

Theorem 3.2 (Sufficient condition for P.E.) If there exists N > 0, such that for any n0, one can find

{u′[n]}n0+N−1
n=n0

∈ {u[n]}n0+N−1
n=n0

satisfying the following: there exist time indices n0 ≤ na ≤ n−
1 < n+

1 < n−
2 <

n+
2 < · · · < n−

i < n+
i < · · · ≤ nb ≤ n0 +N − 1 or n0 ≤ na ≤ n+

1 < n−
1 < n+

2 < n−
2 < · · · < n+

i < n−
i < · · · ≤ nb ≤

n0 + N − 1, such that u′[n+
i ] is a local maximum and u′[n−

i ] is a local minimum of {u′[n]}nb
n=na

for each i, these

local maxima and minima include all input levels {ui}L+1
i=1 , and either

(a) {u′[n+
i ]} is non-increasing, u′[n+

i ] ≥ u′[n] for n+
i < n ≤ nb, u′[n+

i ] differs from u′[n+
i+1] by no more than ∆u,

and {u′[n−
i ]} is non-decreasing, u′[n−

i ] ≤ u′[n] for n−
i < n ≤ nb, u′[n−

i ] differs from u′[n−
i+1] by no more than ∆u;

or

(b) {u′[n+
i ]} is non-decreasing, u′[n+

i ] ≤ u′[n] for n+
i < n ≤ nb, u′[n+

i ] differs from u′[n+
i+1] by no more than ∆u,

and {u′[n−
i ]} is non-increasing, u′[n−

i ] ≥ u′[n] for n−
i < n ≤ nb, u′[n−

i ] differs from u′[n−
i+1] by no more than ∆u,

then V [n] corresponding to u[n] is P.E.
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Proof. Construct a new input sequence ū[n] based on u′[n] which achieves the local maxima {u′[n+
i ]} and the

local minima {u′[n−
i ]} with the same order as in u′[n], but ū[n] varies monotonically from a maximum to the next

minimum or from a minimum to the next maximum. For such an input, memory curve analysis on the Preisach

plane reveals that the corresponding {V̄ [n]} spans R
K . From the way ū[n] is constructed and the conditions given

in the theorem, any vector in {V̄ [n]} must also be present in {V ′[n]} corresponding to u′[n]. Hence {V ′[n]} is P.E.

Finally P.E. of {V [n]} follows since {u′[n]}n0+N−1
n=n0

belongs to the P.E. equivalent class of {u[n]}n0+N−1
n=n0

. �

Theorem 3.2 is not conservative, and it covers a wide class of P.E. inputs. For example, it can be easily

verified that a (periodic) first order reversal input (see Fig. 4(a) for case L = 4), which has been widely used

for identification of Preisach density function [16], and a (periodic) oscillating input with decreasing amplitude

(Fig. 4(b) for case L = 4) both satisfy the conditions in Theorem 3.2, and are thus P.E. In these two cases, u[n]

itself satisfies the conditions imposed for u′[n] in the theorem. Fig. 5 shows an example where one can conclude

the P.E. of a periodic u[n] by inspecting a P.E. equivalent input u′[n]. Note that Theorem 3.2 does not require

u[n] to be periodic, although periodic examples are chosen here for easy illustration.

u[n]

u1

u3

u4

u2

u5

(a)
n u1

u2

u3

u4

u5

u[n]

(b)
n

Fig. 4: Examples of P.E. inputs (L = 4, showing one period): (a) The first order reversal input; (b) An oscillating

input with decaying amplitude.

(A)B B

P.E.

u1

u2

u3

u4

u5

u[n]

A
n

B (A)A
u1

u2

u3

u4

u5

u [n]

B
n

Fig. 5: An example of P.E. input (L = 4, showing one period). The input u′[n], P.E. equivalent to u[n], is obtained

by swapping two sections A−B and A′ −B′ of u[n].

3.3 Comparison of recursive identification schemes

In this subsection the output-based scheme is compared with the difference-based one through simulation. As

shown in (8), the minimum eigenvalue of the observability grammian (i.e., c1 in (7)) is directly related to the

convergence rate of the output-based scheme. The same statement holds for the difference-based scheme provided

that W [n] is replaced with V [n] in the related equations. In Table 1 we list the corresponding
√

1 − c1 (the bound

on parameter error drop over one period) under the two gradient schemes (with γ = 1) for different discretization

levels L with the (periodic) first order reversal input. From Table 1, the difference-based scheme converges faster

9



as expected. Simulation has been conducted for the case L = 10. Fig. 6(a) compares the decrease of parameter

error over periods for the two algorithms when there is no measurement noise, and the conclusion is consistent

with Table 1.

Table 1: Comparison of convergence rates for the output-based algorithm and the difference-based algorithm.
L

√
1 − c1

√
1 − c1

(Output-based) (Difference-based)

5 0.9631 0.9399

10 0.9908 0.9784

15 0.9958 0.9874

20 0.9976 0.9912

25 0.9985 0.9933
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Fig. 6: Comparison of parameter convergence for the output based algorithm and the difference-based algorithm.

(a) Case I: noiseless measurement; (b) Case II: noisy measurement.

Despite the apparent advantage of faster convergence, the difference-based scheme is more sensitive to the

measurement noise: the noise gets magnified when one takes the output difference (analogous to taking the

derivative of a noisy continuous-time signal), and the disturbance is shared only among the active hysterons.

Simulation in Fig. 6(a) is re-conducted where a noise is added to the output, the noise magnitude being 4% of the

saturation output of the Preisach operator. From Fig. 6(b), in this case, the parameter error will not converge to

zero under either of the two algorithms. However, the ultimate identification error of the output-based algorithm

is much lower than that of the difference-based scheme.

3.4 Experimental results based on a magnetostrictive actuator

Having discussed the methods for recursive identification of weighting masses for a Preisach operator, we now

point out how to change the previous algorithms to identify the (piecewise uniform) Preisach density directly. In

10



this case the input is no longer limited to a finite set of values; instead it can take any value in [umin, umax]. Each

component W̄i,j [n] of W [n] no longer represents the state (1 or −1) of the hysteron at the center of the cell (i, j);

instead it represents the signed area of the cell:

W̄i,j [n] = area of C+
i,j [n] − area of C−

i,j [n],

where C±
i,j [n]

�
= {(β, α) ∈ cell (i, j) : the output of γ̂β,α at time n is ± 1}. The definition for V [n] remains

the same: V [n]
�
= W [n] − W [n − 1]. The P.E. conditions (Theorems 3.1 and 3.2) presented for the case of

weighting masses can be extended to the case of piecewise uniform densities in a straightforward manner with

minor modifications.

Experiments have been conducted on a magnetostrictive actuator to examine the identification schemes. Mag-

netostriction is the phenomenon of strong coupling between magnetic properties and mechanical properties of some

ferromagnetic materials (e.g., Terfenol-D): strains are generated in response to an applied magnetic field, while

conversely, mechanical stresses in the materials produce measurable changes in magnetization. Magnetostrictive

actuators have applications to micro-positioning, robotics, ultrasonics, vibration control, etc. Fig. 7 shows a sec-

tional view of a Terfenol-D actuator manufactured by Etrema Products, Inc. By varying the current in the coil,

one varies the magnetic field in the Terfenol-D rod and thus controls the motion of the rod head. Like other smart

material actuators, magnetostrictive actuators display strong input-output hysteresis [22].

Flux Path

Aluminum Housing

Terfenol - D rod

Coil

Coil

Preloaded Springs

Stainless Steel Push Rod

Threaded Preload Cap
with Bronze Bushing

Fig. 7: Sectional view of a Terfenol-D actuator [23](Original source: Etrema Products, Inc.).

When operated in a low frequency range (typically below 5 Hz), the magnetostrictive hysteresis is rate-

independent and can be modeled by (see [7]) 


H = c0I +Hbias

M = Γ[H,ψ0]

D = lrodλs

M2
s
M2

. (10)

Here I is the current input and D is the displacement output. The magnetic field H along the rod direction is

related to I linearly, where c0 > 0 is the coil factor and Hbias is the bias field necessary for generating bi-directional

strains. The bulk magnetization M along the rod direction is related to D via a square law, and the constants lrod,

λs, Ms denote the rod length, saturation magnetostriction and saturation magnetization, respectively. Hence the

magnetostrictive hysteresis is essentially captured through the ferromagnetic hysteresis between M and H , which

is modeled by the Preisach operator Γ.

In our experiments the actuator displacement is measured with a LVDT sensor, which (after low-pass filtering)

has a precision of ±0.5µm. The DSpace ControlDesk is used to send control commands and collect data. The
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following parameters are available from the manufacturer: c0 = 1.54 × 104/m, Ms = 7.87 × 105A/m, lrod =

5.13 × 10−2m, and the following parameters can be identified relatively easily: λs = 1.3 × 10−3, Hbias = 1.12 ×
104A/m. The current input is limited to the range [−0.7A, 1.3A]. “Practical” negative saturation Mmin and

positive saturation Mmax can be obtained by measuring the displacements corresponding to I = −0.7A and 1.3A,

respectively. The constant contribution to the Preisach operator (refer to the discussion in Subsection 3.1 ) is

evaluated as Mmin+Mmax

2 .

A periodic first order reversal current input is used for recursive identification of the Preisach density function.

A practically important issue is the choice of the discretization level L for the input. Fig. 8 shows the identified

density distribution for different discretization levels after eight periods. The output-based gradient algorithm is

used with γ = 1.
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Fig. 8: The Preisach density function identified for different levels of discretization L. (a) L = 5; (b) L = 10; (c)

L = 15; (d) L = 25.
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Although it is expected that the higher discretization level L, the higher model accuracy, there are two factors

supporting a moderate value of L in practice: the computational complexity and the sensor accuracy level. Since

the number of cells on a discretization grid scales as L2, so is the computational complexity of the recursive

identification algorithm. It should also be noted that, from Table 1, the convergence rate
√

1 − c1 decreases as

L increases. Fig. 9 shows the CPU time used in recursive identification for different discretization levels. (To

obtain the CPU time, the recursive algorithm is carried out again using the collected data (the current I and the

displacement D) of 8 periods on a Dell laptop Inspiron 4150.) Also shown in Fig. 9 is the CPU time it takes to

compute the Preisach density function using an off-line, constrained least squares algorithm [7], where the data of

one period were used. From Fig. 9, the square law for the recursive algorithm is evident. The off-line algorithm

becomes prohibitively time-consuming as L gets large, due to the increasing complexity of solving a constrained

optimization problem of many variables.

In the presence of the sensor noise and unmodeled dynamics, higher discretization level may not necessarily

lead to improved performance. Fig. 10 compares the measured hysteresis loops against the predicted loops based

on the identified parameters for different L. Although the scheme with L = 10 achieves much better match than

the scheme with L = 5, there is little improvement when L is increased to 15. Hence for the Terfenol-D actuator

(and the sensor used), it is determined that L = 10 is an appropriate discretization level for the Preisach operator.
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Fig. 9: CPU time used in the recursive gradient algorithm and the off-line least squares algorithm.

4 Adaptive Inverse Control

Fig. 11 shows a schematic of adaptive inverse control. The input to the Preisach operator is obtained through

inversion of the Preisach operator Γ̂ with the current estimate of the Preisach density. The error between the

reference trajectory and the achieved trajectory is then used to update the parameter estimate and thus the

inverse model. For a Preisach operator with piecewise uniform density, its exact right inverse can be efficiently

constructed [13]. Note that for the Preisach operator Γ (with a piecewise uniform density function) to have a

unique (right) inverse, it is required that all diagonal cells have strictly positive density values [17]. However,

when a particular inversion algorithm (e.g., the one in [13]) is used, the inverse trajectory can be made unique

even if some diagonal density values are zero.

To the authors’ best knowledge, the parameter convergence issue in adaptive inverse control of hysteresis has
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Fig. 10: Comparison of measured hysteresis loops with predicted loops based on the identified Preisach density

function. (a) L = 5; (b) L = 10; (c) L = 15.

not been studied in literature. In this section we aim to answer the following question: how is the parameter

convergence related to the reference trajectory?

Parameter
update

Γ
y
ref u y +−

e
Γ̂ −1

Fig. 11: A schematic of adaptive inverse control.

Theorem 4.1 Assume that the true Preisach operator has a piecewise uniform density function, as illustrated in

Fig. 3 (a). Denote by ν∗ the K-dimensional vector of true densities, and by ysat the saturation output corresponding

to ν∗. Let the output-based gradient algorithm be used for the parameter update. Then

(1) For any reference trajectory yref [·] with yref [n] ∈ [−ysat, ysat], the parameter estimate ν̂[n] → ν̂∞ for some

ν̂∞, and the tracking error e[n] = y[n] − yref [n] → 0 as n→ ∞;

(2) Assume that the density ν̄1,1 of the cell (1, 1) is positive. Let yref [·] be periodic of period N that visits

−ysat, and without loss of generality yref [1] = −ysat. Define ur[n]
�
= Γ−1[yref [·], ψ0][n] with ψ0 the memory curve

corresponding to the negative saturation, where Γ−1 is as constructed in [13]. Then ur[·] is also periodic with period

N , and ur[1] = umin. Let the vector of signed areas of cells corresponding to ur[·] be Wr[·] (which is also periodic),

and the null space of [Wr[1] · · ·Wr[N ]]T be Nr. Then the parameter estimate ν̂[n] → Nr + ν∗
�
= {x+ ν∗ : x ∈ Nr}.

In particular, if {Wr[n]}N
n=1 spans R

K , ν̂[n] → ν∗. Analogous results hold if ν̄L,L > 0 and yref [·] visits ysat.

Proof. (1) Define ν̃[n]
�
= ν̂[n]− ν∗, and δ[n]

�
= ν̃[n]T ν̃[n]. From the output-based gradient algorithm (letting γ = 1
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without loss of generality),

δ[n+ 1] = δ[n] − ν̃[n]TW [n]W [n]T ν̃[n]
W [n]TW [n]

= δ[n] − (y[n] − ŷ[n])2

W [n]TW [n]
≤ δ[n]. (11)

Since δ[n] ≥ 0, δ[n] → δ∞ as n→ ∞. This immediately results in ν̂[n] → ν̂∞ for some ν̂∞. Summing (11) over n

leads to ∞∑
n=0

(y[n] − ŷ[n])2

W [n]TW [n]
= δ[0] − δ∞ <∞,

which implies (y[n]−ŷ[n])2

W [n]T W [n] → 0. Since W [n]TW [n] < C for some constant C,

|y[n] − ŷ[n]| → 0, as n→ ∞. (12)

The Preisach operator Γ̂ based on parameter estimate at n can be exactly inverted (hence ŷ[n] = yref [n]) except

for the following two cases: (a) ŷsat[n] < yref [n] ≤ ysat, and (b) −ysat ≤ yref [n] < −ŷsat[n], where ŷsat[n]

denotes the saturation output corresponding to ν̂[n]. For the case (a), the inversion cannot be exact and the input

under the inversion algorithm is u[n] = umax (so that the corresponding ŷ[n] is closest to yref [n]), which implies

ŷ[n] = ŷsat[n], y[n] = ysat, and hence |y[n] − yref [n]| < |y[n] − ŷ[n]|. The same conclusion holds for the case (b).

It then follows from (12) that the tracking error e[n] = y[n] − yref [n] approaches 0 as n→ ∞.

(2) Since yref [kN+1] = −ysat for each k and ν̄1,1 > 0, ur[kN+1] = umin and the state of the Preisach operator

is reset at kN + 1. The periodicity of ur[·] then follows from that of yref [·] and the inverse algorithm. From the

first part of the theorem, |y[n] − yref [n]| → 0 and hence y[kN + 1] → −ysat as k → ∞. Again from ν̄1,1 > 0,

the input u[kN + 1] approaches umin as k → ∞, and u[kN + m] → ur[m] for 1 ≤ m ≤ N . As a consequence,

W [kN +m] →Wr[m]. Since as k → ∞

W [kN +m]T ν̃[kN +m] → 0, for 1 ≤ m ≤ N,

we conclude Wr[m]T ν̂∞ = Wr[m]T ν∗, 1 ≤ m ≤ N , i.e., ν̂∞ ∈ Nr + ν∗. Analogous arguments can be used for the

case where ν̄L,L > 0 and yref [·] visits ysat. �

Simulation has been conducted to illustrate Theorem 4.1. Fig. 12 shows the simulation result of tracking a

sinusoidal signal with amplitude ysat using the output-based adaptive inverse scheme. One can see that the tracking

error goes to zero. Fig. 13 compares the parameter estimate after 160 periods with the true parameter values.

Note that the individual density values do not converge (Fig. 13(a) ). For this particular reference trajectory, the

asymptotic input will be periodic varying between umin and umax without other reversals. Hence for each i the

signed areas of cells (i, 1), · · · , (i, i−1) will be the same; and for each j, the signed areas of cells (j+1, j), · · · , (L, j)
will be the same. What separates a diagonal cell from other cells of the row (or the column) is its triangular shape.

As a result, one can predict that the densities of diagonal cells will be correctly identified and the sum of densities

of cells in each row (or column) (excluding the diagonal element) will be correctly identified. This is verified in

Fig. 13(b).

Experimental results for tracking a sinusoidal signal are shown in Fig. 14 with two different adaptation constants

γ. When γ is bigger, the trajectory converges to the steady state faster but with larger tracking error due to higher

sensitivity to the noise. For γ = 0.2, the tracking error is under 1 µm. Considering the sensor precision, almost
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perfect tracking is achieved for the full operational range of the actuator (Fig. 15). In these experiments and other

experiments reported hereafter, the discretization level L = 10.

If the reference trajectory does not cover ±ysat, Theorem 4.1 says that the tracking error still goes to zero,

but one cannot say more about the parameter convergence. In this case there is no reset mechanisms during the

adaptation, and depending on the initial conditions of the system and the adaptation process, the final steady-state

input trajectories can be different (while the output trajectories are all consistent with the reference trajectory).

Essentially in this case there may exist multiple minor loops that satisfy the output requirement. This is also

demonstrated by experiments (Fig. 16), where two different inputs are found to achieve tracking of a sinusoidal

trajectory with amplitude 15µm (and a DC offset of 30µm).

We note that in Theorem 4.1 the output-based algorithm is required. The results cannot be extended to the

difference-based algorithm. Indeed it has been verified that the difference-based adaptive inverse scheme cannot

achieve asymptotic tracking (Fig. 17).

5 Conclusions

This paper has been focused on recursive identification and adaptive inverse control of hysteresis in smart materials.

A Preisach operator with piecewise uniform density function was used to approximate smart material hysteresis. On

the theoretical side, a necessary condition and a sufficient condition for the parameter convergence were presented

in terms of the input to the Preisach operator. In contrast to the results for linear systems, the conditions here

center around the local maxima/minima of the input. Asymptotic tracking under the output-based algorithm was

established, and the issue of parameter convergence was discussed in terms of the reference trajectory.

Practical issues of using the adaptive schemes were studied in depth, through both simulation and experiments.

Two types of adaptive gradient identification algorithms were compared. It was found that, for purely recursive

identification (i.e., given the same input), the difference-based method has a higher convergence rate in the absence

of noise, but it is more sensitive to the measurement noise. On the other hand, for tracking with adaptive inverse

control, the difference-based scheme is not usable. The choice of the level of discretization was also discussed. It

was shown that a moderate L can be used, taking into account the factors of computational cost, sensing precision,

and model accuracy. In particular, experimental results have shown that the adaptive scheme is able to virtually

cancel out the hysteresis effect throughout the actuator working range with L = 10 for our experimental setup.

Most results of this paper are applicable if the adaptive least squares algorithms [20, 21] (instead of the gradient

algorithms) are used for parameter update.

For future work, it will be of interest to extend the results reported here to the cases where the hysteresis

output is not directly measurable. Such cases happen if, e.g., the high-frequency dynamics of the smart material

actuator is not negligible [13], or the actuator is used to control some other plant.
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[4] J. Schäfer and H. Janocha, “Compensation of hysteresis in solid-state actuators,” Sensors and Actuators A, vol. 49,

no. 1-2, pp. 97–102, 1995.

[5] P. Ge and M. Jouaneh, “Tracking control of a piezoceramic actuator,” IEEE Transactions on Control Systems

Technology, vol. 4, no. 3, pp. 209–216, 1996.

[6] R. B. Gorbet, D. W. L. Wang, and K. A. Morris, “Preisach model identification of a two-wire SMA actuator,” in

Proceedings of IEEE International Conference on Robotics and Automation, 1998, pp. 2161–2167.

[7] X. Tan, R. Venkataraman, and P. S. Krishnaprasad, “Control of hysteresis: Theory and experimental results,” in

Modeling, Signal Processing, and Control in Smart Structures, V. S. Rao, Ed., 2001, vol. 4326 of SPIE, pp. 101–112.

[8] D. Croft, G. Shed, and S. Devasia, “Creep, hysteresis, and vibration compensation for piezoactuators: atomic force

microscopy application,” Journal of Dynamic Systems, Measurement, and Control, vol. 123, no. 1, pp. 35–43, 2001.

[9] H. T. Banks, A. J. Kurdila, and G. Webb, “Identification of hysteretic control influence operators representing smart

actuators, Part I: Formulation,” Mathematical Problems in Engineering, vol. 3, no. 4, pp. 287–328, 1997.

[10] W. S. Galinaitis and R. C. Rogers, “Control of a hysteretic actuator using inverse hysteresis compensation,” in

Mathematics and Control in Smart Structures, V.V. Varadan, Ed., 1998, vol. 3323 of SPIE, pp. 267–277.
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Fig. 12: Simulation result of adaptively tracking a sinusoidal signal with amplitude ysat (L = 10).

18



0 5 10 15 20 25 30 35 40 45 50 55
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Index of discretization cells

P
re

is
ac

h 
de

ns
ity

Identified values
True values

(a)

0 5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01

0.012

Index of aggregate discretization cells

P
re

is
ac

h 
de

ns
ity

Identified values
True values

(b)

Fig. 13: Comparison of identified parameter values with true values L = 10: (a) Comparison for individual cell

density values; (b) Comparison for aggregate cell density values.
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Fig. 14: Experimental results of tracking a sinusoidal reference trajectory: (a) γ = 0.2; (b) γ = 0.5.
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Fig. 15: Achieved displacement vs. desired displacement (over the full operational range of the actuator).
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Fig. 16: Two minor loops corresponding to tracking a sinusoidal signal with amplitude less than ysat.
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Fig. 17: Experimental result showing that the difference-based adaptive scheme cannot achieve asymptotic track-

ing.
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